

Team 10

MagiChess

Jack Deguglielmo, Samantha Klein, Weishan Li, Sai Thuta Kyaw

Advisor: Shira Epstein

Meet the team

Shira Epstein Faculty Team Advisor

Sai Thuta Kyaw Electrical Engineer

Samantha Klein Electrical Engineer

Jack Deguglielmo Computer Engineer

Weishan Li Computer Engineer

Problem Statement

For centuries, the game of chess has been played by two players sitting across a chessboard. The advent of digital technology in the last decades has brought virtual chess to computers and mobile phones and for the first time, this has allowed players to be anywhere across the world.

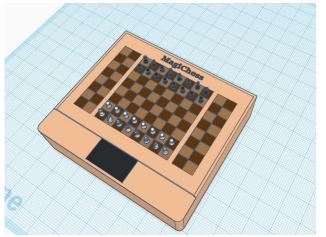
Digital chess lacks:

- A physical aspect/satisfaction of seeing and moving your own pieces Physical chess lacks:
 - Ability to play from anywhere and with anyone

Our Solution

We've decided to close the gap between physical and digital chess. To do this, we plan to create a chess board that allows users to play with an AI or a remote human opponent. Plan:

- Sense location of chess pieces on the board
- Interface with LiChess server
- Automate piece moving



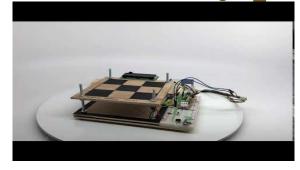
Preliminary System Specifications (Design-agnostic)

- Mechanically move a piece to destination cell
- Remove/replace a piece to/from game board
- Provide visual feedback
 - Game setup, tutorial
 - Game announcements
 - Where pieces can move after picked up
- Provide audio feedback
 - Notification alerts
- Play versus remote opponent
- Playback previous games
- Includes buffer zone to store captured pieces
- Topple the King after checkmate

Preliminary System Specifications (Quantitative)

- Total system dimensions: no larger than 33.5 in x 28 in x 8in (85cm*68cm*20cm)
- Speed of XY plotter: 4-5 cm/s
 - Max time for a move: 15s, x2 for capture and transport
 - Average time for a piece to move: 7.5s
- Weight: Under 25lbs

IIILI


Proposed MDR Deliverables (From PDR)

- LiChess integration with Raspberry Pi (initiate games, execute moves, etc.)
- GUI prototype for Raspberry Pi touch display
- Raspberry Pi outputting digital communication protocols
- Assembly and movement of XY plotter (gantry)
- Results from RFID multiplexing / Hall Effect sensor testing
 - Decision on which sensing technique to use

MDR Deliverables: Sensing Technique

- Initial Testing
 - Magnet Sizes
 - Sensing Methods
 - RFID Test
 - Electromagnet
- Final Product
- Testbench
 - Mimics Gantry (EM moving on a plane)
 - Height Adjustable
 - Controls Electromagnet
 - Sensors and Display

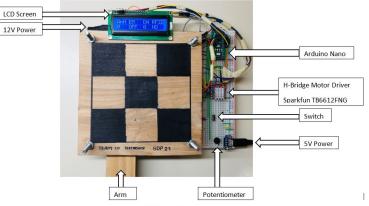
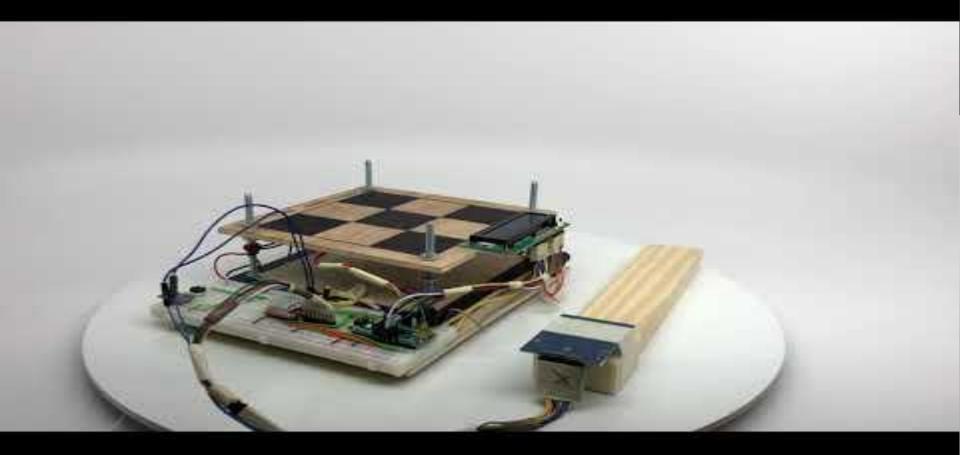



Figure 1: Testbench Setup

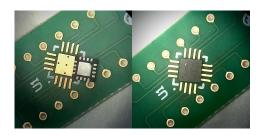
Chess Pieces Sensing Report

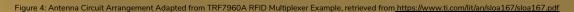
Three different proposed of chess pieces sensing

• Method 1: Use multiplexed RFID antennas across 64 cells.

• Method 2: Use six different strength magnets with different poles to identify pieces.

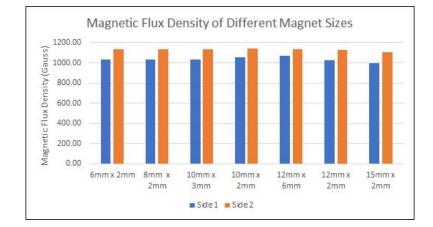
• Method 3: Use magnets to sense occupied cells and single RFID reader to identify


1. RFID Only Sensing Solution



- Multiplexing RFID Antennas with single RFID Reader Chip
 - Research based on RFID <u>Multiplexer Example</u> from Texas Instrument
 - Ordered the Parts and Breakout Boards
 - Mismatched Breakout Boards for RF Switch
 - Same package (QFN16) different size
 - Breakout board datasheet incomplete

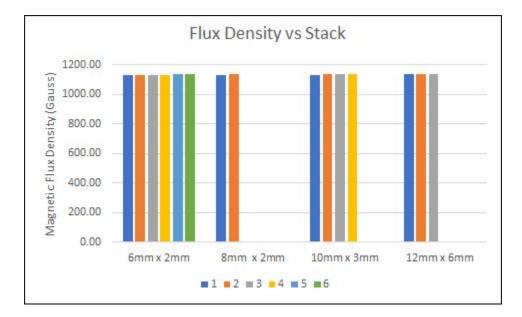
- 64 RFID Readers on single TWI interface
 - AT88RF1354 Atmel TWI RFID Reader Chip
 - Two possible addressing (need at least 8)



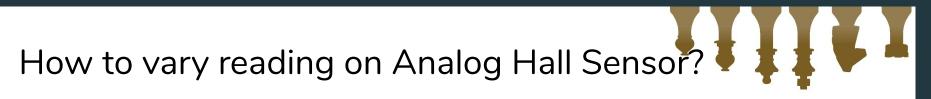
2. Hall Effect Sensor Only

Method 2 : Use six different strength magnets with different poles to identify pieces.

• Know what physical properties of the magnet the sensor can measure



- Analog Hall Sensor SS49E
 - Magnetic Flux Density (Gauss) in terms of Voltage



How to vary reading on Analog Hall Sensor?

• Will Stacking Magnets Increase Reading on Sensor?

• Changing the position varies the reading on the Analog Hall Sensor

• Varied the height of the magnet relative to the base

- The Magnetic Flux Density changes with Altitude.
- Tolerance for pieces off-centered is acceptable
- Not the best fit
 - Need 6 different altitudes
 - The higher the altitude, the harder the electromagnet to attract

3. Hall Sensor & RFID Hybrid

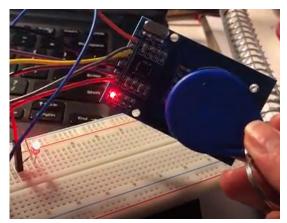
- Hall Sensor for fast scanning of ChessBoard
 - Monitor movements of Chess Pieces by user
 - Fast Scanning Up to 1MHz
 - Software keeps track of chess piece location
- RFID Tags for verification
 - RFID reading works with electromagnet turned on
 - Selectively verify chess pieces
 - Before every game
 - Before and after each move

Sam's Individual Report: MDR deliverable

MDR Deliverable:

• Results of Multiplexing tests

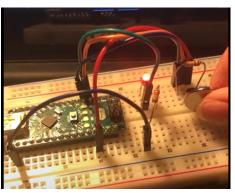
Result of testing (In collaboration with Sai):

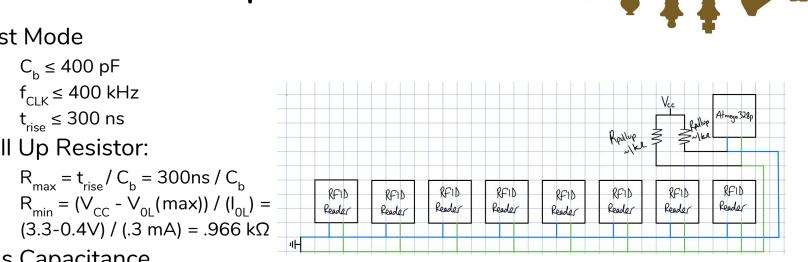

- Hybrid method
 - 64 multiplexed hall sensors
 - One RFID reader and antenna for the electromagnet

Sam's Individual Report pt. 2: Post PDR Accomplishments

RC522:

 Got one working (tested w/ LED)




I2C bus:

- Considered creating a bus with RFID readers rather than multiplexing
- Began drafting the bus

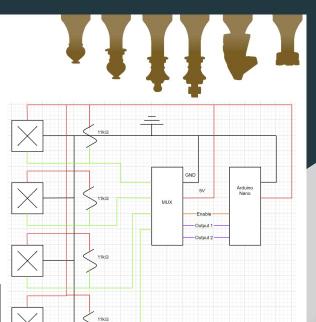
Hall Effect Sensors:

- Got one working (tested w/ LED)
- Multiplexed 4 of them

Sam's Individual Report: I2C bus

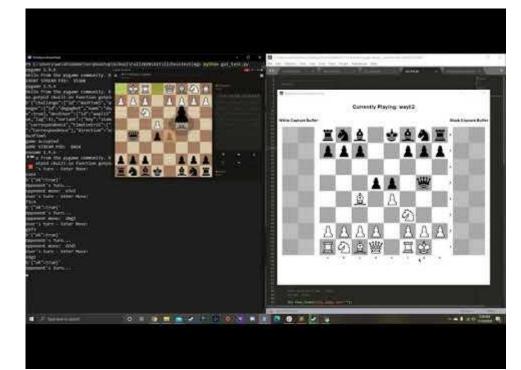
- Fast Mode
 - C_b ≤ 400 pF 0
 - f_{CLK}≤ 400 kHz 0
 - t_{rise} ≤ 300 ns Ο
- Pull Up Resistor:
 - 0
 - $R_{min} = (V_{CC} V_{OI} (max)) / (I_{OI}) =$ 0
- **Bus Capacitance**
 - If $C_{b} \ge 400 \text{ pF}$, a buffer must be added 0
 - Atmega328 : 10 pF Ο
 - Reader (AT88RF1354-ZU): ?? Ο
 - Only 2 possible address locations

I2C bus with 8 readers and no buffer


Sam's Individual Report: Demo!

Hall Sensor Multiplexing

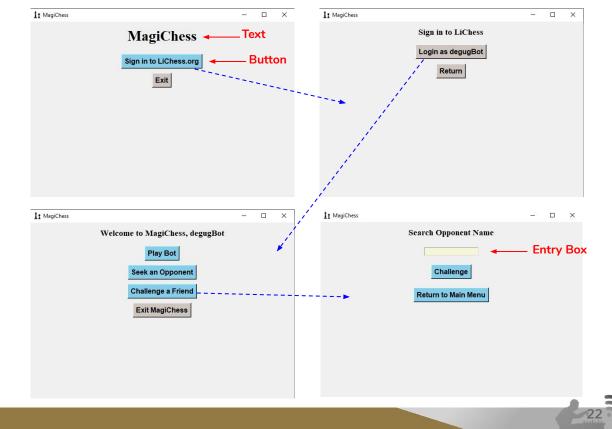
Link to code:


- Used the SN54HC157 from Texas Instruments
 - Quadruple 2-1 Mux
- Multiplexed 4 hall effect sensors
 - \circ Used 2 of the 4 2-1 muxes on the IC
 - Verified using the Arduino serial monitor

Software - Video Demonstration

1 I İİ İ I

21



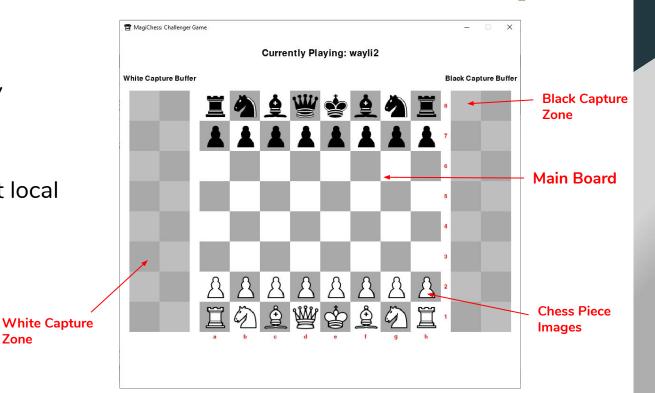
Graphical User Interface

Python <u>tkinter</u> library

- Frames
- Widgets

T T İ İ İ I I

Game Window


Python **<u>pygame</u>** library

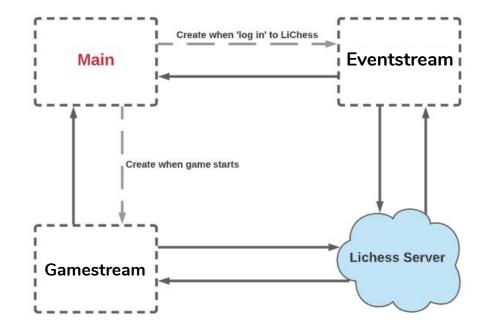
- Draw objects
- Load images

11İİi

Update and reflect local gamestate

Zone

+ <u>+</u> I I L I



Event Stream, Game Stream

Python <u>multiprocessing</u> library

- Communication
- Event Stream
- Game Stream

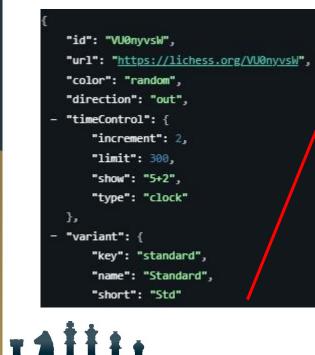
LiChess API

Python <u>requests</u> library

- LiChess interface file
 - Create streams
 - Make challenges
 - Make moves

r tiit:

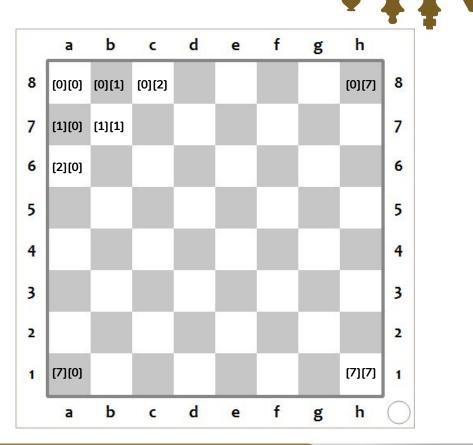
Example challenge request:


Example game stream request response:

LiChess API

Example challenge request response:

"challenger": {
 "id": "thibot",
 "name": "thibot",
 "online": true,
 "provisional": false,
 "rating": 1940,
 "title": "BOT"
},


"destUser": {
 "id": "leelachess",
 "name": "LeelaChess",
 "online": true,
 "provisional": true,
 "rating": 2670,
 "title": "BOT"
},

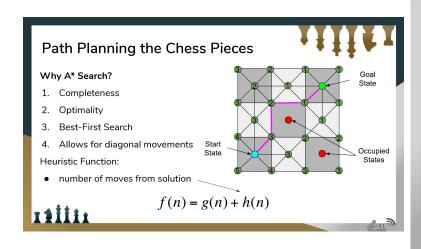
- "perf": {
 "icon": ";",
 "name": "Correspondence"
},
 "rated": true,
 "speed": "blitz",
 "status": "created"

Local Gamestate

- GameState object w/ self.board
- If user is white side:
 - A >> [-][0], H >> [-][7]
 - **1** >> **[7][-]**, **7** >> **[0][-]**
- If user is black side:
 - A >> [-][7], H >> [7][-]
 - **1** >> **[0][-]**, **7** >> **[-][0]**

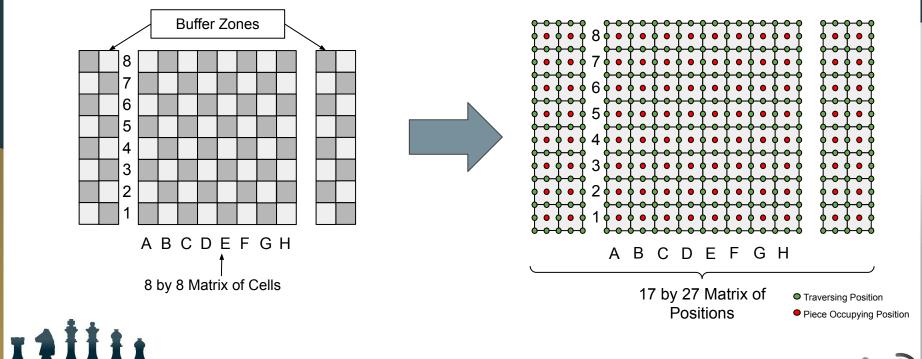
28

GUI / Game Demo


Updates on Chess Piece Path Planning

• Progress Updates

- Developed position map structure
- Straightline heuristic implementation
- Transitioned to greedy best first search


Path Planning Sequence

- 1. Translation of gamestate to position map
- 2. Heuristic calculation for each position state
- 3. Greedy Best First Search
- 4. UART Transmission of path to 328P

Translation of Gamestate

8x8 Gamestate with Buffers

Position Map

Translation of Gamestate (python)

8x8 Gamestate

IIIII

['bR',	'bH',	'bB',	'bQ',	'bK',	'bB',	'bH',	'bR']
['bP',	'bP',	'bP',	'bP',	'bP',	'bP',	'bP',	'bP']
['',							
['',							
['',							
['',							
['wP',	'wP',	'wP',	'wP',	'wP',	'wP',	'wP',	'wP']
['wR',	'wH',	'wB',	'wQ',	'wK',	'wB',	'wH',	'wR']

N	•
	-
	•
	•

	B	lac	k						во	ard					W	hit	e	
•					bR	bH	bB	bQ		bK	bB	bH	bR					
-																		
					bP	bP	bP	bP		bP	bP	bP	bP					
•																		
•																		
•																		
•																		
•					wP	wP	wP	wP		wP	wP	wP	wP					
•					wR	wH	wB	WQ		wK	wB	WH	wR					

Heuristic Calculation

Straight Line Distance

Each position state's heuristic is calculated manually using the distance formula relative to the goal state

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

a and an and a second second		

straightLineDist = math.sqrt(math.pow(endPos[0]-i,2) + math.pow(endPos[1]-j, 2))
posMap[i][j].heuristic = straightLineDist

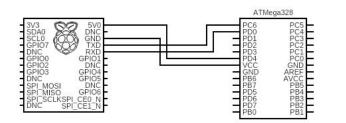
Greedy Best First Implementation

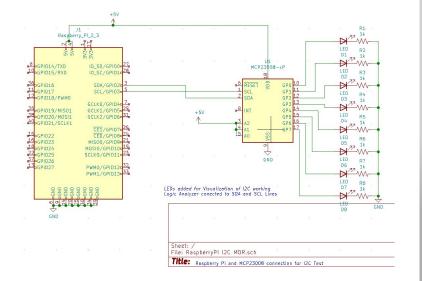
- Why Greedy Best First over A*?
 - Better computational and space complexity
 - Yields similar results to A* (near optimal)
 - Paths are mostly straight lines with small variances
 - Overlaying our own constraints will be more manageable
 - Diagonal move constraints for magnets

		<u>*</u> \$±±\$	
and the second sec	 A high strend state 	- 0 x	
sources entance entance entance entance entance entance			
	อี้กรรม ธระจากการการการการ	Le Disk and a	
	変わってはい かがめ たいてつかれたい かれたいたい	The second second second second second second second second second second second second second second second se	
6		(*) + (+ (+ (+ (+ (+ (+ (+ (+ (+	
	AND INCOMENTATION NON NEW YORK	25.613.5	
2			
	a state of a set a set a set a set a set a set a set a		
	Manage and an		
	MIAR CONTRACTOR CONTRACTOR IN MILLION CONTRACTOR	market in the second second second second second second second second second second second second second second	
	Denener et al de la company de la company de la company de la company de la company de la company de la company	1-141	
	Cale at at all in the states a Quint is all		
	อ้างกระบบของ ความอาจาก พี่เมืองกระบบ	est state	
	State and a second state and state		

x #İİ i ı

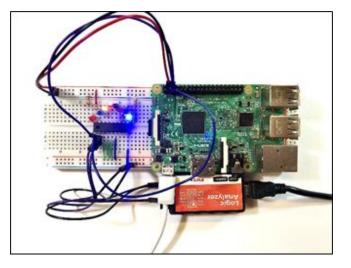
34

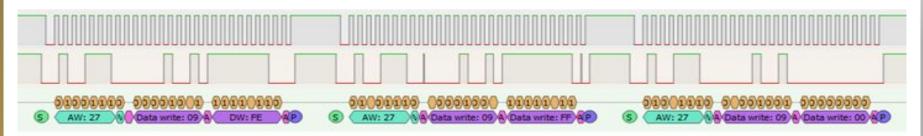

Path Planning with UART Communication Demo



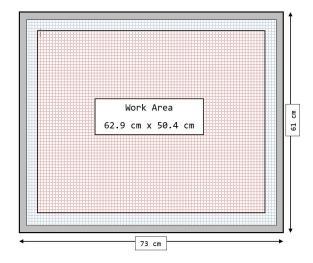
Raspberry Pi Digital Communication

MDR Deliverable: Raspberry Pi outputting digital communication protocols


- Accomplishments:
 - UART Communication with Atmega328P
 - I2C Communication with MCH23008
 - Live Demo of Path Transmission via UART



Evaluation Setup


MDR Deliverables: Gantry

Assembly and movement of XY Plotter Gantry

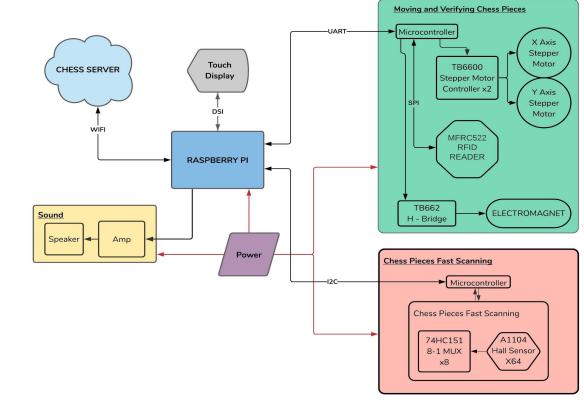
• Specifications

- Dimensions 73 cm x 61cm
- Working Area 62.9cm x 50.4cm
- Gantry Speed
 - 4cm/s @ 60rpm
 - 5cm/s @ 75rpm
- Stepper Motor
 - 200 steps/rev
 - 50 steps/cm

GANTRY DEMO

ITTTI

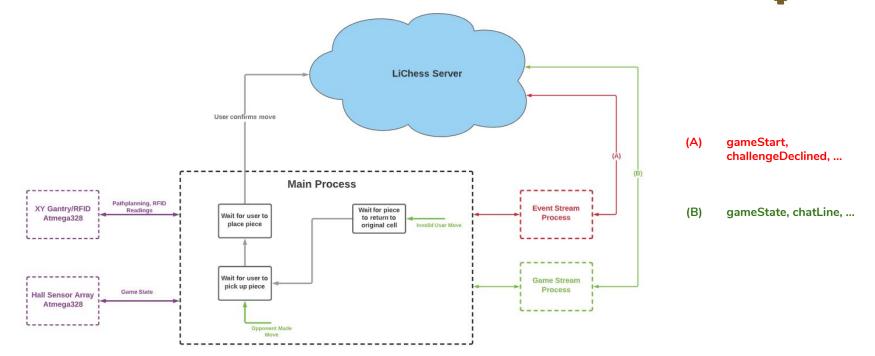
MDR Deliverables



- ✓ Results from RFID multiplexing / Hall Effect sensor testing
 - Decision on which sensing technique to use
 - ✓ Working Subsystems
- LiChess integration with Raspberry Pi (initiate games, execute moves, etc.)
- \checkmark GUI prototype for Raspberry Pi touch display
- \checkmark Path Planning with Greedy BFS
- \checkmark Raspberry Pi outputting digital communication protocols

Assembly and movement of XY plotter (gantry)

System Block Diagram


1 2 İ İ i ı

IIIII

41

Software Diagram - Game State

17İİİ1

Hardware Plan for FPR

- Custom PCB to mount Hall Sensors underneath the ChessBoard
- 2 PCBs
 - Fast Scanning with Hall Sensor
 - Moving and Verification of Chess Pieces.
- PCBs should have
 - Microcontroller, Power Input, ICSP Headers, Connectors, Protection Circuit, Relevant Components
- Raspberry Pi, Stepper Motor Drivers, RFID Reader, H-Bridge

Total Spendings

· · · · · · · · · · · · · · · · · · ·	
Items Purchased (Digikey)	Cost (\$)
16QFN breakout board	12
P25/20 Electromagnet	9.95
13MHz NFC antenna (10)	12.32
Tariff for NFC antenna	1.23
32QFN Breakout board	5.95
AH3564 Hall Sensors (5)	3.58
Tariff for Hall Sensors	0.36
PE4244 RF switches (4)	4.8
TI7960 RFID reader 32QFN (3)	14.46
At88RF RFID tag (10)	8.6
AT88RF RFID reader (5)	9.85
 USPS Shipping	4.99
J	

Items Purchased (AliExpress)	Cost (\$)
Gantry	162.34

IIIII

-44

Items Purchased (eBay)	Cost (\$)
36QFN breakout board (5)	9.25
USPS Shipping	5.15

Total Spent	264.83
Remainding	235.17

Estimated Costs for Next Semester

Item	Cost total (\$)
Hall Sensor PCB (x10)	15.5
MCU PCB	4
Gantry Control PCB	4
Hall Sensors (x60)	109.53
Mux (x8)	5.6
Motor Controllers (x2)	26
Magnets	11
Total	175.63

IIIII

List of Hardware

Hardware	MDR	FPR
Single Board Computer	Raspberry Pi	Raspberry Pi
Hall Sensors	SS49E/ A1104LUA-T	A1104LUA-T
Multiplexor	SN74HC157N	SN74HC151DR
Electromagnet	Adafruit P25/20	Adafruit P25/20
Stepper Motor	NEMA14	NEMA14
Stepper Motor Controller	Velleman VMA409	TB6600
H-Bridge	SparkFun TB6612FNG	SparkFun TB6612FNG
RFID Reader	MFRC522	MFRC522
MCU	Arduino NANO	ATmega328p

List of Software

- ATmega328p code
 - Gantry Control, Look up tables, reading rfid and digital communication
 - Fast Sensing, Signal Multiplexing, Mapping and digital communication
- Python modules:
 - o GUI
 - Game / Event Stream
 - $\circ \quad \ \ \mathsf{Pygame} \ \mathsf{Game} \ \mathsf{Window}$
 - LiChess Interface
 - GameState / Position Map
- Supporting libraries:
 - tkinter
 - multiprocessing
 - o pygame
 - requests

Technical Responsibilities

Jack

- Raspberry Pi interface with 328Ps
- Board scanning and piece verification
- Autonomous game playback
- Altium Lead

Weishan

- Improving and refining GUI
- Interfacing between Raspberry Pi and 328Ps
- Autonomous game playback

Sam

- Hall Effect Sensor Multiplexing
- Budget Manager

Sai

- Movement of Chess Pieces
- RFID Verification
- Team Coordinator

Gantt Chart Until CDR									
Task	Team Member	Dec 6 - Dec 19	Dec 27 - Jan 16	Jan 17 - Jan 30	Jan 31 - Feb 6	Feb 7 - Feb 13	Feb 14 - Feb 20	Feb 21 - Feb 27	Feb 28 - Mar 6
Path Planning	Jack								
Gantry Integration	Jack								
Display Integration	Wei								
Visual/ Audio Notification	Wei								
Fast Scanning Integration	Wei								
Fast Scanning w/ Hall Sensors	Sam	Learn Altium	Design PCB	Design PCB (Order by 1/30)	Start Code	Code	Test PCB	Integration	
Gantry	Sai	Calibration	MCU / SMC Migration	LUT/UART	Power		Test PCB	CDR Prep.	
RF/MCU	Sai	Wiring / I2C test	AT88RF	Design PCB	Communicati on test	Integration Test		PCB integration	
Misc.	Sai	Test Bottom Materials	3D Print Pieces	Wooden Frame	Chess Board Cut and Etched	Finalize Chess Pieces			

Gantt Chart After CDR									
Task	Team Member	Mar 7 - Mar 13	Mar 14 - Mar 20	Mar 21 - Mar 27	Mar 28 - Apr 3	Apr 4 - Apr 10	Apr 11 - Apr 18	Apr 19	
Bug Fix	Jack								
Training/Replay	Jack								
Bug Fix	Wei								
Training/Replay	Wei								
System Integration	Sam								
Bug Fix	Sam								
Iron Out Bugs and Inconsistency	Sai								
System Integration	Sai								

External Links

All Demo Videos Playlist

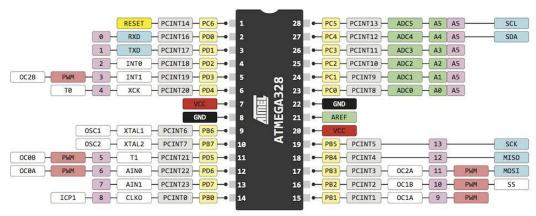
 <u>https://www.youtube.com/playlist?list=PLN2cGbKly2ZLFxfQogWYSfkWECB</u> <u>J7iLU9</u>

Github Repo

• https://github.com/degugj/lichessTesting

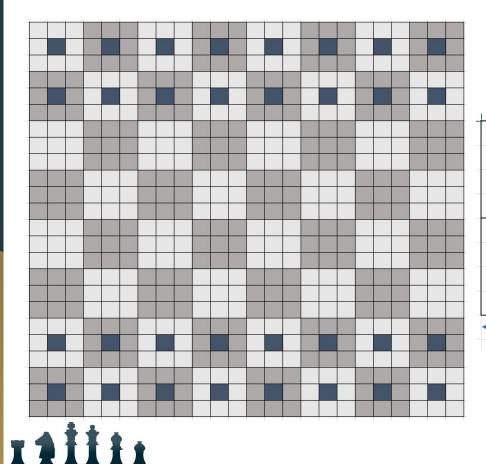
52

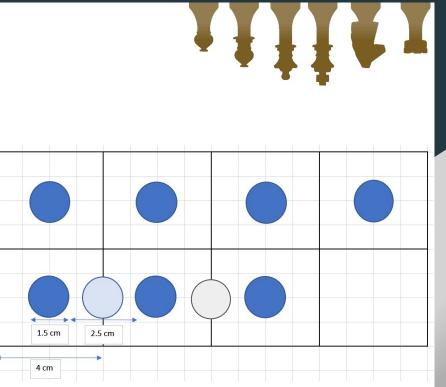
Thank You


Justification of Atmega328P

• Why?

- I/O Considerations
 - UART Pins
 - Stepper Motor Drivers
- Familiarity


Path Planning Metrics



- What is a heuristic?
 - An estimated cost from node n to a goal node
- What is Greedy BFS?
 - Greedy Best First Search is a search algorithm that expands nodes closest to the goal state, on the grounds that the closest nodes will return a solution quickly (f(n) = h(n))
 - Time and space complexity?
 - Worst case: O(b^m) where m is the max depth of the tree
 - However, with our straight line distance and finite chess board, this will be reduced substantially

